Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
TBD (Ed.)Animal colouration is fundamentally important for social communication within conspecifics to advertising threat to competitors or fitness to possible mates. Social status and animal colouration are covarying traits that are plastic in response to dynamic environments. In the African cichlid,Astatotilapia burtoni, body colouration and behaviour have been extensively reported to vary with social rank. However, the nature of the interaction between these two traits is poorly understood. We hypothesise that pigmentation patterns could be linked to the behavioural repertoires underlying social status and can be resolved to regions on the cichlid body plan. To test this hypothesis, we generated Territorial (T) and Non-territorial (NT) males and employed computer vision tools to quantify and visualise patterns/colour enrichment associated with stereotyped T/NT male behaviour. We report colour-behaviour interactions localised in specific areas of the body and face for two colour morphs illustrating a more nuanced view of social behaviour and pigmentation. Since behavioural and morphological variation are key drivers of selection in the East African Great Rift Lakes, we surmise our data may be translatable to other cichlid lineages and underline the importance of trait covariance in sexual selection and male competition.more » « less
-
TBD (Ed.)ABSTRACT Natural selection shapes traits during evolution including animal coloration known to be important for concealment and communication and color has been particularly salient in the explosive radiation of cichlid fish species in the rift valley lakes of East Africa. Though selection can produce variation in color via genetic substrates during early development, plasticity in coloration can occur through endocrine, neural and transcriptional cues in response to various environmental stimuli. It is well known that some animals often change color to match their visual ecology. Adult male cichlid fish (Astatotilapia burtoni, Lake Tanganyika) can switch between blue and yellow body colors. Different colors result from the expression of pigment-bearing cells, which differ in density and function between these two color morphs. We show thatA. burtoniswitches from yellow to blue depending on their visual environment by downregulating endothelin receptor B (EdnRB) mRNA via DNA hypermethylation at a single cytosine residue within its promoter. EdnRB functions in yellow chromatophores to signal the aggregation of yellow pigments, making yellow less visible. Taken together, the regulation ofEdnRBthrough DNA methylation in yellow chromatophores, in part, contributes to pigmentation changes from blue to yellow, depending on visual environment.more » « less
-
TBD (Ed.)The Uncultivated Bacteria and Archaea dataset is a foundational collection of 7,903 genomes from uncultivated microorganisms. It highlights how microbial diversity is readily recovered using current tools and existing metagenomic datasets to help piece together the tree of life.more » « less
An official website of the United States government
